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ABSTRACT

Covariance localization is an essential component of ensemble-based data assimilation systems for large

geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances,

where the concepts of location or vertical distance are not well defined, vertical localization in observation

space is not as straightforward as in model space. The detailed differences between model space and ob-

servation space localizations are examined using a real radiance observation. Counterintuitive analysis in-

crements can be obtained with model space localization; the magnitude of the increment can increase and the

increment can change sign when the localization scale decreases. This occurs when there are negative

background-error covariances and a predominately positive forward operator. Too narrow model space lo-

calization can neglect the negative background-error covariances and result in the counterintuitive analysis

increments. An idealized 1Dmodel with integral observations and known true error covariance is then used to

compare errors resulting from model space and observation space localizations. Although previous studies

have suggested that observation space localization is inferior to model space localization for satellite radi-

ances, the results from the 1D model reveal that observation space localization can have advantages over

model space localization when there are negative background-error covariances. Differences between model

space and observation space localizations disappear as ensemble size, observation error variance, and lo-

calization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to

more effectively assimilate radiance observations.

1. Introduction

The ensemble Kalman filter (EnKF; Evensen 1994;

Burgers et al. 1998) uses a Monte Carlo approach to es-

timate the flow-dependent background-error covariance

and combine observation information with an ensemble

of forecasts. It has been widely used in atmospheric ap-

plications (e.g., Houtekamer andMitchell 1998;Whitaker

et al. 2004;Houtekamer et al. 2005; Buehner et al. 2010a,b).

For large geophysical applications, EnKF assimilation

systems typically use ensembles of orders 102. Thus, the

use of the background-error covariance matrix from the

direct outer product of ensemble perturbations tends to

be severely rank deficient and compromised by sampling

error, leading to degraded analyses and filter divergence.

One treatment for the sampling error and increasing the

rank of the covariance matrix is covariance localization

(Houtekamer andMitchell 1998), which limits the impact

of observations on remote state variables but preserves

the large and meaningful correlations close to observa-

tions. Houtekamer and Mitchell (2001) and Hamill et al.

(2001) adopted the compactly supported polynomial ap-

proximation of a normal distribution given by Gaspari

and Cohn (1999; GC) and demonstrated the efficacy of a

distance-based localization to reduce the impact of spu-

riously large covariances from remote observations.

Covariance localization can be performed in the hori-

zontal and vertical (Houtekamer et al. 2005), and in time

(Anderson 2007; Chen and Oliver 2010). Moreover,
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different localizations are also preferred for different

observation types (Houtekamer and Mitchell 2005) and

kinds of state variable (Anderson 2007, 2012; Kang et al.

2011). Based on sample correlations, several methods

have been developed to compute the localization function

dynamically (e.g., Anderson 2007; Bishop and Hodyss

2009a,b; Zhou et al. 2008; Emerick and Reynolds 2011;

Anderson 2012; Anderson and Lei 2013; Zhen and

Zhang 2014).

Localization can be implemented as a Schur (Hadamard)

product of the sample background-error covariance

matrix and a positive semidefinite localization matrix

(Houtekamer and Mitchell 1998), which is called model

space localization. Model space localization is used in

ensemble-variational data assimilation systems (e.g.,

Wang et al. 2008). In a serial EnKF, where observations

are assimilated one by one or in batches, localization is

often implemented by multiplying the sample covariance

between observation and model state priors and the

sample covariance between observation and observation

priors by a distance-dependent function (Houtekamer

and Mitchell 2001; Hamill et al. 2001), which is called

observation space localization. Localization can also be

implicitly implemented by applying the assimilation al-

gorithm on local regions and with distance-dependent

observation error statistics as in the local ensemble

transform Kalman filter (LETKF; Ott et al. 2004; Hunt

et al. 2007; Miyoshi et al. 2007).

Satellite radiances are an essential component of the

global and regional assimilation systems, and their as-

similation has a strong positive impact on forecast skill,

especially where conventional observations are sparse

(e.g., Derber and Wu 1998; Le Marshall et al. 2006;

McNally et al. 2006; McCarty et al. 2009; Collard and

McNally 2009). Satellite radiances are integral obser-

vations that provide information about temperature and

moisture in an atmospheric column. As with other kinds

of integral observations, correlations between radiances

and model state variables in the column can be very

different than local observations of model state variables

(Anderson and Lei 2013). For this reason, vertical local-

ization for satellite radiance observations is not as

straightforward as for ‘‘conventional’’ observations (local

observations of model state variables). This is especially

true for observation space localization, since the distance

between an observation and a model state variable is

not a well- defined quantity. Houtekamer et al. (2005)

and Houtekamer and Mitchell (2005) assimilated Ad-

vanced Microwave Sounding Unit A (AMSU-A) radi-

ance observations by treating them as local observations

whose vertical location is defined by the level at which

the weighting function used in the radiative transfer

peaks. Miyoshi and Sato (2007) used the flow-dependent

normalized weighting function itself to define the vertical

localization function. Fertig et al. (2007) proposed a lo-

calization method for assimilating radiance observations

in the LETKF, where the state at a given location is up-

dated by radiance observations that are strongly corre-

lated to the model state. In contrast, model space

localization does not involve the forward observation

operator, and so the notion of a distance between model

state variables and observations is not required. Campbell

et al. (2010) suggested that localizing radiance observa-

tions in model space was more accurate than localizing in

observation space.

The differences between model space and observa-

tion space localization is explored here using a real

radiance observation. Based on the findings from the

single radiance observation experiment, the perfor-

mance of model space and observation space localiza-

tion is compared in an idealized 1D model where the

true error covariance is known. Although Campbell

et al. (2010) found that observation space localization

was inferior to model space localization, the results

from the idealized 1D model reveal situations where

the opposite can be true.

The theoretical basis for localization in model and

observation space is described in section 2. Section 3

presents the single radiance observation experiment.

Section 4 presents comparisons of model space and ob-

servation space localizations in an idealized 1D model.

Section 5 summarizes the results and conclusions.

2. Theoretical basis for localization in model and
observation space

In the context of the EnKF, the analysis increment

(analysis 2 background) equals the Kalman gain K

multiplied by the innovation vector that is the difference

between the observation and the prior estimate of the

observation. To compute the innovation vector for ra-

diance observations, a radiative transfermodel is used to

convert the model state vector that includes tempera-

ture, water vapor, and other radiatively active trace

gases (such as ozone) to radiance. Since the innovation

vector is not affected by localization, we only focus on

K here.

Without localization, K is given by (Evensen 1994)

K5P fHT(HP fHT 1R)21 , (1)

where P f, an n 3 n matrix (n is number of state vari-

ables), is the sample background-error covariance ma-

trix; H, a p 3 n matrix (p is number of observations), is

the forward observation operator (linearized about the

background state); and R, a p 3 p matrix, is the

OCTOBER 2015 LE I AND WH ITAKER 3949



observation error covariance. For satellite radiances, H

is the Jacobian matrix, which is the partial derivative of

the radiance with respect to the model state.

Following Houtekamer and Mitchell (2001), model

space localization is given by

K5 (r
m
+P f )HT[H(r

m
+P f )HT 1R]21 , (2)

where rm is the covariance localization matrix in model

space, and + denotes the Schur (elementwise) product.

Given a symmetric and positive semidefinite localiza-

tion matrix rm, the product rm+P
f is a valid covariance

matrix (Gaspari and Cohn 1999). With localization in

observation space, K can be written as

K5 [r
o1
+(P fHT)][r

o2
+(HP fHT)1R]21 . (3)

Here ro1 and ro2 are the localization matrices for obser-

vation space localization. The ro1 is an n3 pmatrix with

each column containing the localization function for one

observation with the state vector, while ro2 is a p 3 p

matrix with each column containing the localization

function for one observation with all the other observa-

tions. Localization in model space is directly applied to

the background-error covariance matrix and it is con-

ducted before operating the transpose of the forward

operator; localization in observation space is operated

after the forward operator multiplying the background-

error covariance matrix. Because the forward operator

and localization operations do not associate or commute,

observation space and model space localization are not

equivalent.

3. Single radiance observation experiment

To illustrate the differences of vertical localization in

model and observation space, a single radiance observa-

tion experiment is conducted. A randomly chosen radi-

ance observation fromNOAA-15AMSU-AN15 channel

7, which is located at (80.188S, 5.148E) and valid at

0000 UTC 10 April 2014, is used. (Similar results are

obtained for other randomly chosen observations, but not

shown.) In our calculations, its vertical location is assigned

to level 30 (around 280hPa) where the weighting function

peaks. The prior ensemble of temperature profiles at the

assigned observation location and time are interpolated

from the prior ensemble of a 6-h cycling EnKF experi-

ment that uses the NCEP GFS with a resolution of

T574L64 and 80 ensemblemembers. The Jacobianmatrix

and observation priors are computed by the Community

Radiative Transfer Model (CRTM; Weng 2007; Han

et al. 2007). For the particular observation and back-

ground, the innovation is negative. The temperature

FIG. 1. Temperature increment profiles from a single radiance

observation with localization scale (a) 3.2, (b) 1.6, and (c) 0.8 ln(p).

The blue line indicates no localization, and red and green lines

indicate localization in model and observation space, respectively.

The black solid line represents the GC localization function.
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increment profile is computed with GC localization in

model and observation space using (2) and (3).

The blue line in Fig. 1 shows the analysis temperature

increment profile without localization. Three localization

scales, 3.2, 1.6, and 0.8 (in the units of natural log of

pressure), are applied. With the larger localization scale

(3.2), the increments around the assigned observation

location from model space and observation space locali-

zations are similar. The model space localization in-

crement tapers to zero at larger separations than the

observation space localization increment, which suggests

that to be equivalent to observation space localization,

model space localization requires a smaller localization

scale. When the localization scale in observation space

decreases, the increment around the assigned observation

location stays similar, and the increments decrease away

from the assigned observation location. However, when

localization scale in model space decreases, the magni-

tude of the increment around the assigned observation

location becomes larger, and the sign of increment below

level 27 changes from negative to positive. Buehner et al.

(2010a) showed that broader vertical localization in

model space resulted in less local analysis increment, but

vice versa when localizing in observation space; and a

possible explanation was the neglect of negative corre-

lations. Thus, the structure ofH andP f are examined here

in order to explain the counterintuitive increments with

model space localization.

Figure 2a shows H for this single radiance observation

and the row of P f at the assigned observation location

(level 30). Please note that the peak level of H (level 40)

is different from that of weighting function (level 30),

because the former gives the level where the radiance

observation has the largest gradient with respect to

model temperature and the latter is the level where the

maximal transmittance is obtained; H has continuously

nonnegative values in the vertical. The background er-

ror covariances between temperature at level 30 and

temperature below level 27 are negative. For model

space localization, rm is applied to P f before operating

on HT [(2)]; thus, as the localization scale decreases, the

negative covariances are effectively neglected, and the

values of H(r+P f )HT and (r+P f )HT at the assigned ob-

servation location increase. For this particular observa-

tion, the magnitude of H(r+P f )HT is much smaller than

R; therefore, the larger positive value from (r+P f )HT

leads to a larger increment at the assigned observation

location when the scale of rm decreases.

To explain why the analysis increment changes sign

below level 27 when the localization scale in model

FIG. 2. Forward operator H for the single radiance observation,

and a row of P f with different localization scales for state variable

temperature at level (a) 30 and (b) 22 with temperature at all levels.

The value in the parentheses denotes the integral of H and r+P f at

a given level.

FIG. 3. True Gaussian and the second derivative of Gaussian

error covariances with e-folding scale 0.5 for level 25 with all levels,

and a forward operator for an observation with an e-folding scale

1.0 and a correlation peak at level 25.
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space decreases, the analysis increment at level 22 is

analyzed as an example. The row of P f at level 22 with

different model space localization scales is shown in

Fig. 2b. The covariance is positive around level 22, and it

becomes negative between levels 26 and 30. The analysis

increment with model space localization is proportional

to (r+P f )HT [(2)], and the innovation is negative. With

broad localization, (r+P f )HT at level 22 is negative,

which produces a positive increment at level 22. When

the localization becomes narrower, the negative co-

variances between levels 26 and 30 are effectively

eliminated, and (r+P f )HT at level 22 becomes positive.

Thus, a negative increment is produced and the analysis

increment changes sign with small localization scale in

model space.

4. Idealized 1D model

Section 3 illustrated the differences between model

space and observation space localizations for a real ra-

diance observation, but the performance from different

localizations cannot be validated, since the true Kalman

gain K is unknown. To evaluate the relative perfor-

mance of model space and observation space localiza-

tions, an idealized 1D model is used here. The idealized

1D model has 101 equally distributed vertical levels

between 1000 and 10 hPa with interval 0.046 units of

2ln(p/ps), where ps is the surface pressure. The true state

values are assumed to be 0 for all levels. Two kinds of

true error covariance are used: one is Gaussian (without

negative correlations) and the other is the second de-

rivative of Gaussian (with negative correlations). With

an e-folding scale of 0.5 (the default value), the two

kinds of true error covariances for level 25 (around

316 hPa) are shown by the blue and red lines in Fig. 3.

The forward operatorH is simply a vertical average with

Gaussian kernel. The green line in Fig. 3 shows the H

that peaks at level 25 with an e-folding scale 1.0 (the

default value). Three observations that have H peaking

at levels 25, 50, and 75 are generated by adding random

draws from a normal distribution with mean 0 and

specified R to the true observation value. The default

value for R is set to 0.1. The sample error covariance is

obtained by randomly sampling the true error co-

variance, and the default ensemble size is 40. The GC

function is used for localization in model and observa-

tion space. The sample K is computed with localization

in model and observation space, and an analysis is pro-

duced with the sample K. The root-mean-square error

(RMSE) of the analysis relative to the true state value is

calculated and averaged over 10 000 trials.

Figure 4 shows the RMSE with different localization

scales given the default parameters. When the true co-

variance is Gaussian, model space localization always

performs better than observation space localization with

localization scales smaller than 7.0 [as was shown by

Campbell et al. (2010)]. The minimum error with model

space localization is 0.8352 at a localization scale 1.3,

while the minimum error with observation space local-

ization is 0.8426 at a localization scale 3.8.When the true

covariance is the second derivative of Gaussian and

contains significant negative values, observation space

localization is better than model space localization for

localization scales between 0.2 and 5.0. Observation

space localization obtains the minimum error 0.9751 at

FIG. 4. Average analysis RMSE with different localization

scales when the true covariance is (a) Gaussian and (b) the second

derivative of a Gaussian, given that the length scale for the true

covariance is 0.5, the length scale of the forward operator is 1.0,

the observation error variance is 0.1, and it has an ensemble size of

40. The black solid line denotes the average analysis RMSE using

the true Kalman gain, and the green solid line presents the av-

erage analysis RMSE using the estimated Kalman gain without

localization.
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localization scale 2.5, while model space localization

produces the minimum error 0.9758 at localization scale

3.3. Model space localization has an error maximum at a

localization scale of 0.6, and at this localization scale the

error difference between model space and observation

space localizations is the largest. This is due to the

elimination of negative correlations in P f by the model

space localization, before the application of HT. When

the localization scale is large (.5.0), similar errors are

obtained with localizations in model and observation

space for the both types of true error covariances. As

long as the localization scale is much larger than the

FIG. 5. The maximum analysis RMSE reduction (minimum analysis RMSE divided by the forecast RMSE) from

model space and observation space localizations for (left) Gaussian P f and (right) the second derivative of Gaussian

P f with (a),(b) varying ensemble size; (c),(d) R; and (e),(f) scale of H. The crosses denote situations in which the

difference between model space and observation space localization is not significant at the 95% confidence level

(using a paired sample t test).
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scale of the true Pf and H, there is no significant loss of

information from localization, regardless of whether

localization is performed in model or observation space.

Figure 5 shows the maximum RMSE reduction (mini-

mum analysis RMSE divided by the forecast RMSE)

from localization in model and observation space with

varying ensemble size, R, and scale of H. Previous re-

sults (Fig. 4) generally hold when the parameters are

varied: model space localization produces larger error

reduction than observation space localization when P f

is positive and vice versa when P f contains negative

values. With P f as the second derivative of Gaussian,

model space and observation space localizations pro-

duce similar errors for large ensembles (size 640) and

large R ($1.0), as shown in Figs. 5b and 5d. When the

scale of H is extremely small, that is, the radiance ob-

servation is nearly local, similar errors are obtained

with localization in model and observation space

(Figs. 5e, f). When P f is the second derivative of

Gaussian, model and observation space localization

perform similarly when the scale of H is small (,1.0) and

large (.2.0). Figures 4 and 5 suggest that model space

and observation space localizations converge as en-

semble size, R, and localization length scales increase,

regardless of the structure of P f.

5. Conclusions

Because the concept of a vertical location of satellite

radiances are not well defined, observation space locali-

zation for radiance observations is not as straightforward

as model space localization. However, observation space

localization is used in most EnKF algorithms, since it does

not require direct computation of the background-error

covariance matrix. To understand the difference between

model space and observation space localization, a single

real radiance observation experiment and an idealized 1D

model with a nonlocal H operator are investigated. The

background-error covariances can have negative values.

Results from the single radiance observation experiment

show that the analysis increment with observation space

localization is always smaller than that without localization

and has the same sign; however, the increment with model

space localization can be larger than that without locali-

zation and can change sign. Although the study of

Campbell et al. (2010) suggested that observation space

localization was inferior to model space localization, re-

sults from the 1D idealized model demonstrate that ob-

servation space localization can be superior tomodel space

localizationwhen the background-error covariance has the

opposite sign ofH. However, model space and observation

space localizations produce similar results with increasing

ensemble size and localization length scales. This suggests

that large ensemble sizes and vertical localization length

scales may be the most straightforward way to ensure ef-

fective assimilation of radiance observations.

For a serial EnKF, (3) can be solved by assimilating

observations one by one or in batches, which leads to

slight difference of the RMSE compared to directly

solving (3), but does not qualitatively change the com-

parison between model space and observation space

localization (not shown). For satellite radiances whose

vertical locations are not well defined, the choice of

observation location has an impact on the observation

space localization but not on the model space localiza-

tion. Slightly different errors are obtained with obser-

vation space localization when the observation location

is shifted, however, the general conclusions presented

here still hold.
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